1,296 research outputs found

    Semiclassical Description of Tunneling in Mixed Systems: The Case of the Annular Billiard

    Full text link
    We study quantum-mechanical tunneling between symmetry-related pairs of regular phase space regions that are separated by a chaotic layer. We consider the annular billiard, and use scattering theory to relate the splitting of quasi-degenerate states quantized on the two regular regions to specific paths connecting them. The tunneling amplitudes involved are given a semiclassical interpretation by extending the billiard boundaries to complex space and generalizing specular reflection to complex rays. We give analytical expressions for the splittings, and show that the dominant contributions come from {\em chaos-assisted}\/ paths that tunnel into and out of the chaotic layer.Comment: 4 pages, uuencoded postscript file, replaces a corrupted versio

    Monte--Carlo Thermodynamic Bethe Ansatz

    Full text link
    We introduce a Monte--Carlo simulation approach to thermodynamic Bethe ansatz (TBA). We exemplify the method on one particle integrable models, which include a free boson and a free fermions systems along with the scaling Lee--Yang model (SLYM). It is confirmed that the central charges and energies are correct to a very good precision, typically 0.1% or so. The advantage of the method is that it enables the calculation of all the dimensions and even the particular partition function.Comment: 22 pages. Added a footnote and realizations for the minimal models. Fortran program, mont-s.f90, available from the source lin

    I ask the profession to stand still: The Evolution of American public accountancy, 1927-1962

    Get PDF
    This paper traces the emergence of the AICPA as an effective national representative of the American profession. Central to this evolution was a broadening of the Institute\u27s outlook to encompass all practicing CPAs and to embrace the benefits of public relations and lobbying. The paper begins with the Wall Street elite that dominated the Institute\u27s predecessor, the AIA, and describes the pressures for reform that culminated in the Securities Acts of 1933 and 1934 and set this evolution in motion. The final section makes use of former AICPA president Marquis Eaton\u27s papers to show how pressure from the Securities and Exchange Commission, from competing professions, and from a geometric increase in the profession\u27s numbers brought a more pragmatic and aggresive leadership to the Institute, one that more closely resembles the modern AICPA

    Near zero modes in condensate phases of the Dirac theory on the honeycomb lattice

    Full text link
    We investigate a number of fermionic condensate phases on the honeycomb lattice, to determine whether topological defects (vortices and edges) in these phases can support bound states with zero energy. We argue that topological zero modes bound to vortices and at edges are not only connected, but should in fact be \emph{identified}. Recently, it has been shown that the simplest s-wave superconducting state for the Dirac fermion approximation of the honeycomb lattice at precisely half filling, supports zero modes inside the cores of vortices (P. Ghaemi and F. Wilczek, 2007). We find that within the continuum Dirac theory the zero modes are not unique neither to this phase, nor to half filling. In addition, we find the \emph{exact} wavefunctions for vortex bound zero modes, as well as the complete edge state spectrum of the phases we discuss. The zero modes in all the phases we examine have even-numbered degeneracy, and as such pairs of any Majorana modes are simply equivalent to one ordinary fermion. As a result, contrary to bound state zero modes in px+ipyp_x+i p_y superconductors, vortices here do \emph{not} exhibit non-Abelian exchange statistics. The zero modes in the pure Dirac theory are seemingly topologically protected by the effective low energy symmetry of the theory, yet on the original honeycomb lattice model these zero modes are split, by explicit breaking of the effective low energy symmetry.Comment: Final version including numerics, accepted for publication in PR

    Mass and Gas Profiles in A1689: Joint X-ray and Lensing Analysis

    Full text link
    We carry out a comprehensive joint analysis of high quality HST/ACS and Chandra measurements of A1689, from which we derive mass, temperature, X-ray emission and abundance profiles. The X-ray emission is smooth and symmetric, and the lensing mass is centrally concentrated indicating a relaxed cluster. Assuming hydrostatic equilibrium we deduce a 3D mass profile that agrees simultaneously with both the lensing and X-ray measurements. However, the projected temperature profile predicted with this 3D mass profile exceeds the observed temperature by ~30% at all radii, a level of discrepancy comparable to the level found for other relaxed clusters. This result may support recent suggestions from hydrodynamical simulations that denser, more X-ray luminous small-scale structure can bias observed temperature measurements downward at about the same (~30%) level. We determine the gas entropy at 0.1r_{vir} (where r_{vir} is the virial radius) to be ~800 keV cm^2, as expected for a high temperature cluster, but its profile at >0.1r_{vir} has a power-law form with index ~0.8, considerably shallower than the ~1.1 index advocated by theoretical studies and simulations. Moreover, if a constant entropy ''floor'' exists at all, then it is within a small region in the inner core, r<0.02r_{vir}, in accord with previous theoretical studies of massive clusters.Comment: 18 pages, 20 figures, 7 tables, accepted for publication in MNRAS, minor changes to match published versio
    corecore